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Rotating flow over a step 

By DON L. BOYER 
University of Delaware, Newark 

21 December 1970 and in revised form 2 - .me 1971) 

The flow of a rotating homogeneous incompressible fluid over a step is investi- 
gated. In  the physical system considered the rotation axis is vertical and the 
step, which is assumed to be infinitely long, is located on a horizontal plane 
surface. Upstream of the step the fluid is in a uniform free stream motion at an 
angle a to a line perpendicular to the step axis. The analysis is restricted by the 
following: E < 1, Ro N E9, h/D N E), HID N EO, and cos a N Eo where Ro and E 
are the Rossby and Ekman numbers and h/D and HID are the step height to 
step width and water depth to step width ratios respectively. The flow field is 
shown to consist of interior geostrophic regions, Ekman layers on the horizontal 
surfaces and vertical shear layers located in the vicinity of vertical planes defined 
by the edges of the step. In  the vertical layers there is a balance between the 
inertial, Coriolis, and pressure terms in the momentum equations while 
the effects of viscosity are found to be negligible. Downstream of the step 
the streamlines are shifted to the right (positive or Northern Hemisphere 
rotation) of their upstream locations by a distance of X = 2*(h/D) E-9cosa. 
Experiments are presented which are in good agreement with the theory 
advanced. 

1. Introduction 
In  a recent paper Boyer (1971) considered the flow of a homogeneous 

incompressible rotating fluid over a long ridge of constant cross-section 
(figure 1). The analysis and accompanying experiments in this study were 
restricted by the following: 

(1.1) i- E = v/2wD2 < 1, Ro = U/2wD = ICE*, 
h/D = h, E9, HID N EO, cos N ED, 

where E is the Ekman number, v the kinematic viscosity, w the rotation rate, 
Ro the Rossby number, U the free stream speed, k and h, constants of order 
unity, a the angle between the free stream and the ridge axis, and where the 
remaining terms are defined in figure 1. In  addition to (1. l), it was also assumed 
that the ridge slope is of infinitesimal order (i.e. O(E*)) everywhere. 

The purpose of the present paper is to show how this latter requirement can 
be relaxed; i.e. while retaining (l.l), how does one analyze flows for which 
certain portions of the topography slope are large? In order to simplify the 
discussion while still including the pertinent physics for this class of problems, 
the flow over a step will be considered (figure 2) .  
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FIGURE 1. Physical system - small slope ridge study. 
Dimensionless quantities are indicated by parentheses. 
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FIGURE 2. Physical system - step. 
Dimensionless quantities are indicated by parentheses. 
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For the small slope case, the lowest order motion outside the Ekman layers 
on the bounding surfaces is geostrophic everywhere. This is not true for topo- 
graphies with large slopes since, as shown below, the zeroth-order motion is 
ageostrophic in vertical shear layers of thickness O(E*). These layers occur in the 
vicinity of vertical planes defined by the large slope portions of the topography; 
see, for example, figure 2. The flow is ageostrophic in the shear layers because the 
inertial terms cannot be neglected. As such we will refer to these vertical shear 
layers as ‘inertial layers’. 

The remaining portions of the flow field away from the bounding surfaces are 
geostrophic to lowest order. Ekman layers occur on the bounding surfaces except 
in corner regions where the inertial and Ekman layers intersect (figure 2). The 
general aim of the analysis is to determine the lowest order motion in the geo- 
strophic regions and then to compare these results with experiment. With this 
limited objective, it is unnecessary to determine the detailed structure of either 
the inertial layers or the corner regions. 

It should be noted at the outset that if one restricts to a non-inertial flow 
(i.e. zero Rossby number) the problem as defined can be solved by using an 
analysis almost identical to that given by Moore & Saffman (1969). Under this 
assumption the flow field again consists of three geostrophic regions (figure 2), 
but now the shear layers defined by the edges of the step are Stewartson 
layers. 

Since the flow in the geostrophic regions is irrotational and since, in addition, 
the flow field is assumed to be independent of the co-ordinate along the axis of 
the step system, it is easily shown that the streamlines are straight in these 
regions. The indeterminateness of the flow in the geostrophic regions is then 
removed by matching with the Stewartson layers; e.g. see Moore & Saffman. 

A horizontal streamline predicted for a non-inertial flow is sketched in figure 
3; note that the streamline pattern is independent of the co-ordinate measured 
along the ridge. Downstream of the ridge the streamline is shifted a distance S 
to the right (facing downstream) of its upstream direction. It is easily shown 
that 

S = 24(h/D) E-* cos a. 

It is important to note that for the non-zero Rossby number theory developed 
below, the solution obtained approaches the non-inertial solution as k-+ 0 (i.e. 
Ro-t 0). It is found that S as predicted by the inertial theory is independent of 
Ro and is the same as that given by (1.2); i.e. the streamline shift does not depend 
on inertial effects. On the other hand the streamline patterns predicted for non- 
zero Ro in the vicinity of the step are quite different from those obtained for the 
non-inertial theory (figure 3). 

With the present laboratory apparatus it is not possible to experiment in the 
range of validity of the non-inertial theory. Experiments can, however, be 
conducted for the inertial case, as defined by (1.1).  Under these conditions the 
theory advanced is found to be in good agreement with experiment. 
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FIGURE 3. Interior streamline pattern for a non-inertial flow (i.e. Ro = 0). 

2. Scaling and analysis 
We assume that the flow is steady and that the step is infinitely long (i.e. so 

that the velocity field is independent of the y co-ordinate). The dimensionless 
momentum and continuity equations are then given by 

(2.1) i 
kE+(uu, + WU,) 1 - @, + v -I- E(u,, + u,,), 

- U. + E(v,, + ~,,), 
kE+(uw, + WW,) = - 0, 
~E*(uv,  + WV,) = - 

u,+w, = 0, 
+ E(w,, + w,,), 

respectively, where we have utilized the relation Ro = ICE+. Here (u, v, w) are the 
Eulerian velocity components with respect to the (z, y, z )  co-ordinate system and 

0 = ( - *0w+ (PIP) + 4) /2WUD,  

where d is the distance from the axis of rotation, p is the pressure, p the density, 
and 4 the gravitational potential. The velocity components have been non- 
dimensionalized using the free stream speed l7 and the co-ordinates with the 
step width D. For the symmetric system under consideration (figure 2 )  the 
horizontal velocity components are even, and the vertical component odd, in 
the vertical co-ordinate. We thus solve for z < only. 

Interior regions 

We assume that the dependent variables in the interior regions (i.e. outside the 
boundary layers and corner regions) can be expanded in power series in E and 
further that the leading terms are given by 

u = U,Eo+UIE*+ ..., 

w = WoEo+q:E++ ..., 
0 = QOEo+ <DlE4+ ..., 

= & E O + ~ E ~ +  ..., 
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where U,, L;, . . . and Ql are assumed to be of order unity. The order of the leading 
terms is dictated by the method of non-dimensionalization and that of the first- 
order terms by the suction velocity in the Ekman layers. If we now assume that 
variations in the dependent variables are the same order as the variables them- 
selves and then substitute (2.2) into (2.1), the zeroth-order equations are 

1 @ox = v,, QOU = - u,, 
Q'oz = 0, Uor+ w, = 0. 

Solutions of (2.3) require that 

u, = cosa, v, = G((x), w, = 0. (2.4) 

Here U, is determined from the upstream boundary condition. It should be noted 
that this is the leading term for u in all three interior regions since it is shown 
below that, the O(Eo) component of u does not change across the inertial layers. 
That W, = 0, is obtained from the fact that (2.3) requires w, to be independent of 
x while, as noted above, w, and hence W,, must be odd in z. 

The first-order interior equations are now given by 

(2.5) i @Iz = V,, Qlu = -Ul-kcosaV,, ,  
Qb = 0, UlZ+W1, = 0. 

W, = kz cos 01 VOzr. 

Solving (2.5) for W, and noting that w must be odd in z one obtains 

(2.6) 

We now recall from the Ekman layer analysis in Boyer (1971) that the vertical 
velocity component evaluated a t  the edge of the Ekman layers is given by 
2-* V, E*. This value must be equated to the interior component, (2.6), evaluated 
at x = -HID. One thus obtains the governing equation for G; i.e. 

Kx,+aGx = 0, 

where a = 2-4 k cos a (HID).  Solving for V, one obtains 

(2.7) 

V, = A ecaz + C ,  ( 2 . 8 )  

where A and C are constants of integration. Substituting (2.8) into (2.5) and 
solving yields 

(2.9) 

u = cosaEo+(Aakcosae-ax+B)E~+ ... 
v = (Ae-ax+ C) EO+% (z) E*+ .. ., 
w = Aa2k cos ax e-ax E )  + . . . , 

where B is another constant of integration and where, for convenience, we have 
also included the zeroth-order terms. Note that A ,  B and C must be determined 
in each of the geostrophic regions to complete the analysis. 

Far upstream of the step (region I in figure 2 ) ,  the flow field must approach a 
uniform free stream. Thus from (2.9) one obtains 

'1 

A,  = 0, B, = 0 ,  C, = sina, (2.10) 

where the subscripts refer to the appropriate interior region. The lowest order 
solution in region I is thus complete and indicates no upstream influence due to 
the step. 
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The need for vertical shear layers at x = x, = 0 , l  now becomes apparent. If 
there are no shear layers it is clear that the order unity y-velocity component V, 
and shear stress V,, between regions I and I1 and I1 and 111, respectively, would 
both have to be continuous. From (2.9) and (2.10) it follows that the only solution 
meeting these requirements is 

U, = C O S ~ ,  V, = sina, W, = 0, (2.11) 

for each of the geostrophic regions. 
The trouble with this solution can be seen by examining the x flux of volume. 

The Ekman layer on the bed contributes an x flux of O(E4) which is the same in 
all three regions, but that due to the geostrophic flow U, = cos a is discontinuous 
by O(h/D) or in view of the scaling restrictions (l.l),  O(E4). Thus u is forced to 
change by O(E4) in shear layers a t  xo = 0 , l .  But if u changes by O(E4) across the 
layers, it  follows from an examination of the shear layers (see below) that V, is 
continuous, but V,, is discontinuous, across the layers. Hence the solution (2.11) 
cannot be correct to lowest order and the more general interior solutions (2.9) 
must be considered. Let us now examine the structure of the free shear layers. 

Inertial layers 

We define a stretched vertical boundary-layer co-ordinate by 

X-X, = <Eb (b  > 0) ,  

where x, = 0, 1, cis assumed of order unity and b is to be determined. We further 
assume that a/& - EO. Now the matching condition with the interior regions 
requires the leading term in u to be of O(Eo); i.e. in the vertical layers 

u = 0, EO, 

where 0, is of order unity and where - is used to indicate a vertical layer 
quantity. But if 0, = oO(c), the continuity equation, last of (2 . l ) ,  requires the 
leading term in w to be of O(E--b). This is clearly impossible and one concludes 
that U,, = 0. Thus the O(Eo) terms of u in both the interior and vertical shear 
layer regions are independent of x and hence are given by cos a. 

We now assume the following expansions in the vertical layers 

u = ~ o s ~ E o + ~ ~ E + +  ..., 
= ~ E O + E E C +  ..., 

w = FT',E*-b+ ..., 
(2.12) 

where O,, . . . , FT', are assumed of order unity, the orders of the second term in u 
and the leading term in v are indicated by the interior solutions, and the leading 
term in w is then obtained from the conservation of mass equation in the vertical 
layers. The second term in v is included for convenience at  this point and will be 
discussed below; here c is to be determined. 

It is convenient to introduce the z and y component vor.ticity equations. 
Neglecting terms of obviously higher order, these are given by 

kE* UV,, = - U ,  + E v~,,, 
~ E ~ U W ,  = - V ,  + E w ~ ~ ,  

respectively. 

(2.13) 
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We now show that Po + Po(<, 2 ) ;  i.e. q is a constant for each shear layer. Thus 
the y-velocity component Vo evaluated in the geostrophic regions is continuous a t  
xo = 0,1 .  Substituting (2.12) into (2.13) we obtain 

k cos aF&, E&-2b = -D15 E*-b + P 0565 
k cos aWOc5 

(2.14) 

(2.15) 
respectively. 

Consider the following: (i) If inertia N Coriolis in (2.14), then b = 0. This 
possibility must be dismissed since it does not have a boundary-layer character. 
(ii) If  Coriolis N viscous in (2.14), b = f. But then the inertial term in (2.14) is 
larger than the assumed leading order terms so that this balance is also not 
possible. (iii) If inertia N viscous in (2.14), then b = 4, and the balance is an 
inertia-viscous one in (2.15) as well. The boundary-layer equations are 

= - P on + W 0555 E3-4b, 

k cos aKss = ~ 5 r s ,  k cos = n&, 
respectively. Solutions of these equations cannot be matched with the geostrophic 
solutions and hence this balance is also not a possible one. (iv) If inertia N Coriolis 
in (2.15), b = 8. The boundary-layer equations are thus 

- P& = 0, k cos aT7& = -v,,, 
respectively. The solution for q satisfying the geostrophic matching conditions 
is = constant. It then follows that Po = 0. This balance is also impossible. 
(v) If Coriolis N viscous in (2.15), then b = 8. But now the inertial term in (2.15) 
is larger than the assumed leading order terms; i.e. a contradiction. (vi) Finally, 
if inertia N viscous in (2.15) we are again led to (iii) which was shown to be 
impossible. 

We conclude that the leading term for v (i.e. C) in the shear layer equations 
is a constant in each layer. Thus the y-velocity component V, in the geostrophic 
regions is continuous across the shear-layers; i.e. from (2.9) continuity of V, a t  

(2.16) 
xo = 0 , l  yields 

(2.17) 
respectively. 

Return now to the shear layer expansions (2.12) where 6 is now considered 
to be constant and hypothesize that the role of the shear layers is to remove the 
discontinuity in the shear stress between the geostrophic regions. The shear stress 

A,, + C,, = sin a, 

A,, e-a + CII = A,,, e-a + CIII, 

requirements are 
(2.18) 

where the - and + signs represent geostrophic regions to the left and right, 
respectively, of the shear layer under consideration. Clearly then, from (2.18), 
b = C. 

Again substituting (2.12) into (2.13), we now obtain 

k cos EP& E&-b = - O 15 E4-b + P 1555 E1-2b, (2.19) 

k cos aWoC5 = - 12 Eb + W 0555 Ef-4b.  (2.20) 
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We now consider the possible balancing of terms in (2.19) and (2.20) subject to 
the constraints of the geostrophic motion: (i) If in (2.19) inertia, Coriolis - viscous 
then b = +. From (2.20) this leads to the boundary-layer equation 

~ o , , ,  - k cos amoc5 = 0. 

The only solution of this equation satisfying the interior matching conditions on 
qo is mo = 0. This scaling is thus not a possible one. (ii) If in (2.20) Coriolis - vis- 
cous, we find b = A. There is a contradiction, however, since the neglected 
inertial term is of lower order than the assumed leading order terms. (iii) The 
only remaining possibility is that inertia N Coriolis in (2.20). This leads to 
b = $ and thus the balance is also an inertia-Coriolis one in (2.19). The resulting 
inertial boundary-layer equations are given by 

k cos %55 = - El,, 
(2.21) i ~ C O S ~ W ~ C ~  = -V,,, 

o,, + @& = 0, 

% ( z  = -HID) = 0. 

where the continuity relation has also been included. 
The Ekman compatibility condition combined with the above scaling requires 

(2.22) 

The situation here is similar to that discussed by Moore & Saffman in that it 
seems that (2.22) does not allow a transport from the Ekman layers into the 
inertial layers. What it really implies, however, is that fluid is transported from 
the Ekman layers into the inertial layers in a region of width O(E*), a source 
with respect to the inertial layers. The singular behaviour is associated with the 
edge of the step. 

While the boundary-layer equations (2.21) can be solved subject to the 
appropriate matching conditions imposed by the geostrophic motion and the 
boundaries z = 0 and z = -HID,  it is not necessary to carry out this analysis 
in order to determine the solution in the geostrophic regions. We now use a 
procedure similar to that introduced by Stewartson (1966) and then used by 
Moore & Saffman. We first use the continuity relation to eliminate 
first of (2.21) and then we integrate the resulting equation across 
layer for a fixed z ;  i.e. 

or 

Using (2.18) and integrating from z = 0 to  z = - H / D  we then obtain 
m 

Ic(H/D) cos a{&; (x,) - V,,+ (x,)} = mo ( z  = - H / D )  dc. (2.23) 

Consider now the mass transport through the corner region near xo = 0 as 
sketched in figure 4. The width of the region considered is that of the inertial 
layers, O(E*), and the height is taken as O(Ea) where 0 < /3 < Q. The lower limit 
on p is required so that relation (2.23) can be utilized and the upper limit ensures 

-m  
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that the upper boundary of the region is outside of the Ekman layers. From the 
geostrophic solutions and attendant Ekman layer equations we find that the 
net transport per unit length across the vertical surfaces of the corner region is 

(2.24) 
given by 

In - Out = h, cos a Ei. 

Note that, for the corner region near x, = 1, the sign of the right-hand side of 
(2.24) is negative. This net transport must equal the transport across the horizon- 
tal surface as given by (2.23) and thus 

6, (xo) - 6; (xo) = k (h,/k) (DIH), (2.25) 

where the upper sign is for x, = 0 and the lower for x, = 1. 

GJ-z KO@= -H/D)d< 

FIGURE 4. Corner region transport. 

Applying (2.25) to the interior equations, (2.9) yields the desired solution; i.e. 

A,, = 2*h, cosa, (2.26) 

(2.27) 

applying (2.25) at xo = 0 and xo = 1 we find 

e-a(A,,, - A,,) = - 24 h, cos a, 

respectively. Solving (2.16)) (2.17)) (2.26), and (2.27) one obtains 

C,, = sin a - 2* h, cos a, 
CIII = sin a. } (2.28) 

A,, = 2+h, cosa, 
AIII = 24h, cos a (1 - ea), 

Thus the leading order velocity components in the interior have been deter- 
mined. By equating the x mass transport to O(E*) across planes parallel to the 
y, z plane in each of the three geostrophic regions one finds that B,, = B,,, = 0. 
Thus the second-order interior term in u has also been determined. 

The lowest order horizontal streamline pattern is now obtained by integrating 
the relation U,dy = Qdx. The resulting equation for the streamline passing 
through the origin is given by 

(2.29) 

Examples of these streamlines for a = 0 are plottedin figure 5. The flow character- 
istics, as might be expected, are qualitatively similar to those discussed in Boyer 

i 
x tan a, 

x tan a - (2*h,/u) {u + (1 - ea) e-a“}, 

(x < 0) 
(0 < x < 1)  
(x 2 1). 

xtana+(29h0/u){1-ux-e-a”}, 
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1971). There is no upstream influence and downstream of the ridge the stream- 
lines are shifted a distance S to the right, facing downstream, where 

S = 2*(h/D) E-* cos CI. (2.30) 

Note that as k+O or a+o3 (i.e. Ro-tO) in (2.29), the streamline pattern 
approaches that given by the non-inertial analysis discussed earlier (figure 3) .  
It should again be emphasized that while the downstream shift S does not 
depend on inertial effects, the streamline characteristics in the vicinity of the 
step are strongly dependent on these effects. 
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FIGURE 5 .  Interior streamlines-theoretical. The flow is from left to right and the 
rotation is counterclockwise. E = 1.8(10)-5, HID = 0.750, h/D = 0.033, a = 0. 

I n  the experiments discussed below a step topography of finite length is 
considered; i.e. the step is confined laterally by vertical walls. Thus from an 
experimental standpoint it would be desirable to obtain a theoretical solution 
for the flow over a step system located on the upper and lower walls of a channel 
of finite width. This is not an easy task, however, a t  least for the inertial problem. 
Such a solution has thus not been attempted. The difficulties are two-fold. In  
the first place the governing equation for the stream function $, in the geostrophic 
regions would contain the non-linear inertial term J($,V”), where J is the 
Jacobian. Numerical solutions would thus have to be sought. The second diffi- 
culty is a numerical one, since it is by no means obvious just how to incorporate a 
boundary condition such as that given by (2.25) into a numerical scheme. 

3. Experimental results 
The above theory can be compared with experiment by using a rotating water 

tunnel. The basic capability of the tunnel is that it can provide a uniform flow 
relative to a rotating observer. Step topographies can thus be placed in the flow 
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as indicated in figure 2 and the resulting motion can be examined using dye 
tracer techniques. Since the details of the rotating apparatus have been des- 
cribed elsewhere (Boyer 1971), they will not be repeated here. The experimental 
parameters and/or ranges investigated in the present study are given in table 1. 

Since the water tunnel is only 35 cm wide, it becomes important to choose the 
experimental parameters carefully so that the flow in the central portions of the 
tunnel approximates that for an infinite step. Placing an upper limit of 5 cm 
on the predicted downstream shift S was found to be a satisfactory criterion in 
t,his regard. 

D = 2.54cm 0.1 < U < 0.5 cm/sec 
H = 1.905 & 0.008 cm < 1.5 rad/sec 
h = 0.084 5 0.005 cm < 9.4(10)-3 cma/sec 

0.5 < w 
9.0(10)-3 < Y 

HID = 0.750 5.0(10)-4 < E .C 2.0(10)-3 
h/D = 0.033 

CI = 00 

0.02 < Ro < 0.20 

TABLE 1 

Figure 6 (plate 1) is a photograph of an experiment in which a tracer has been 
released from a series of lateral positions upstream of the step and in the mid- 
plane ( x  = 0) of the tunnel. Since the flow is steady, these streaklines depict the 
streamlines of the flow. It is clear from the photograph that there is good quali- 
tative agreement with the theory. For example, there is little discernable up- 
stream influence, the flow in the vicinity of the step is similar to that predicted 
and there is a net displacement to the right far downstream. The quantitative 
agreement is also quite good as indicated by the theoretical streamline sketched 
on the photograph. Note that far downstream of the step the streamlines again 
curve toward the left. This return leftward curvature is attributed to side wall 
effects in the tunnel. 

Figure 7 is a plot of the maximum downstream shift S as a function of the 
lateral co-ordinate y for the experimental run given in figure 6. This plot clearly 
shows that the side walls affect the streamline pattern in the vicinity of the 
tunnel walls. The effect is relatively small in the centraI portion of the flow field, 
however, and thus the assumption of a step of infinite length is a reasonable one 
in this region. 

In  order to quantitatively compare theory and experiment, for a series of 
experiments, runs were conducted in which E ,  h/D and HID were fixed and Ro 
was varied. The maximum shift S was then measured and compared with the 
theoretical value given by (2.30). Figure 8 demonstrates the results of two such 
series of experiments. One first notes that there clearly is a Rossby number 
dependence for S ;  this is in apparent opposition to the theory. Discrepancies of 
the order noted should be expected, however, since terms of O(Ro) have been 
neglected in the theoretical development. Note that the agreement improves as 
the Rossby number is reduced and hence the experiments are consistent with 
the theory in this regard. 
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It should be noted that various experimental errors may also contribute to  
the discrepancies between theory and experiment. These include, for example, 
side wall effects, horizontal shear in the free stream flow, non-neutrally buoyant 
tracer effects, errors in velocity measurements and errors in geometry. The latter 
effect became especially apparent in the present study in that gap widths (i.e. 
H and H - h) had to  be accurate to  within 0.1 mm if satisfactory flows were to  
be obtained. 

As a final experiment the p H  technique discussed by Baker (1966) was used 
to  examine the structure of the vertical velocity field in a qualitative way. The 

s 

i 1.0 

Wall L End efl’ects 4 Wall 

negligible 

FIGURE 7. Lateral variation of the downstream shift for the experimental run given 
in figure 6. 

Stheo (E= 1.33(10)-3) t- 
i 

0.9 i 
0.04 0.06 0.08 

Ro 

FIGURE 8. Downstream shift vs. Rossby number. HID = 0.750, h/D = 0.033, a = 0. 
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experiment performed is indicated schematically in figure 9 (c) (plate 2). Here 
a tracer was released at a distance of 1-27 ern upstream of the ridge and at a 
height of 0.95 cm above the floor of the tunnel. The lateral location of the tracer 
source was 8 cm from the vertical wall on the left facing downstream. Two 
horizontal reference wires were positioned as indicated. 

Figure 9(b)  (plate 2) is a photograph of an experiment. The reference wires 
are clearly indicated by the dark horizontal lines and the tracer streakline by the 
somewhat wavy light line. The top of the lower step is indicated by the light 
horizontal line near the bottom of the photo. An exaggerated interpretive streak- 
line is given in figure 9 (c). 

Figure 9 (a) is a plot of the theoretical vertical velocity field in the geostrophic 
regions for the parameters indicated; the calculations are made at  the fixed 
height at which the tracer is released. The vertical velocity field in the shear 
layers is indicated schematically by the dashed lines. Since E - O(lO-4) in the 
experiment and since the free stream velocity is of order unity, the streakline 
slope should be O(l0-l) in the inertial layers and 0(10-2) in the geostrophic 
regions. 

We can make the following observations from the experiment: (i) The streak- 
line is relatively flat upstream of the step. This agrees with theory since the 
Ekman suction velocity here should be zero. (ii) In  the vicinity of the forward 
face of the step the streakline has a relatively large positive slope. This is in 
agreement with the O(E*) positive vertical velocity near x, = 0 as discussed 
earlier. (iii) Over the step the Ekman suction velocity is negative as indicated 
in figure 9 (a) and thus the streakline should slope downward slightly as shown. 
(iv) Near the downstream face of the step the streakline has a relatively large 
negative slope. This also should be expected since there is an O(E*) suction into 
the corner near xo = 1 as previously described. (v) While the theory predicts a 
positive vertical velocity from Ekman layer pumping downstream of the step 
(figure 9 (a ) ) ,  a positive streakline slope is not apparent in the photograph. 

In  summary an inertial theory for flow over a step of infinitesimal amplitude 
has been advanced; the theoretical restrictions are delineated in relations (1.1). 
Experiments have also been presented which are in good agreement with the 
theory. 
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FIGURE 6.  Midplane streamlines-experimental ; a theoretical streamline is indicated by 
the dashed line. The flow is from left to right and the rotation is counterclockwise. 
E = 1.79(10)-4, Ro = 7.5(10)-2, HID = 0.75, h/D = 0.033, a = 0. 
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FIGURE 9. Experiment demonstrating the vertical velocity field in the vicinity of the step; 
E = 3.2(10)-4, Ro = 1.4(10)-2, HID = 0.75, h/D = 0.033. (a)  Vertical velocity profile 
evaluated at z = - i H .  ( b )  Experiment. (c) Interpretive sketch. 
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